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An elastic body of finite dimensions in the form of a truncated hollow circular cone with a groove along the generatrix is considered.
The uncoupled problem of thermoelasticity is formulated for this body for different types of boundary conditions on all the surfaces.
These are the conditions for specifying the displacements or sliding clamping on surfaces with fixed angular coordinates and the
conditions for specifying the stresses on surfaces with a fixed radial coordinate (shear stresses are assumed to be zero). It is assumed
that the temperature is a specified function of all the spherical coordinates. Some auxiliary functions, related to the displacements,
are introduced first, and equations for these functions are then derived using Lamé’s equations. A finite integral Fourier
transformation with respect to one of the angular variables is then employed. After this, by solving certain Sturm-Liouville
problems, a new integral transformation is constructed and is applied to the equations with respect to the other angular variable.
As a result a one-dimensional system of differential equations is obtained, to solve which an integral Mellin transformation is
employed in a special way. Finally, exact solutions of some problems of thermoelasticity are constructed in series for this body.
© 2002 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEMS

We consider steady problems of uncoupled thermoelasticity for a body occupying a region described
in a spherical system of coordinates (r, 8, ¢) by the relations

GgSsr<a, 0SS0, @s@<9 (1.1)

It is assumed that the temperature field 7(r, 6, @), obtained from the solution of the fairly simple
harmonic boundary-value problem, is known. The displacements u,, ug and u, or the conditions of sliding
clamping

Uglo=; =0 Ty, lo=oy, = Top lo=0, =0 i=0,1 (12)

are given on the conical surfaces 6 = w; ( = 0, 1). On the plane surface ¢ = ¢; (i = 0, 1) either the
displacements are specified or also the conditions for sliding clamping
u(p l(p:(p‘- = O, T(p, I(p=(p'. = t‘pe I‘D:‘Pi = 0, = 0,] (13)

The conditions may be arbitrary on the spherical surfaces r = a; (i = 0, 1), but to fix our ideas we will
take the conditions of the first fundamental problem

o, Ir:ai = —pi(e» (P)’ Tro lr:ai = tnp Ir:a,- = O; i= O' 1 (14)

We construct exact solutions of these problems below.

2. TRANSFORMATION OF THE THERMOELASTICITY EQUATIONS BY
INTRODUCING NEW UNKNOWN FUNCTIONS

Following the approach proposed earlier [1], instead of the displacements (G is the shear modulus)

2Gu, =u, 2Guy=V, 2Gu,=W 2.1)
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We will introduce the functions

Z(r,0,¢) 1 ||vsinef w|
. == A E (2.2)
Z'(r,0,¢)| sin® [|[Wsin8 14
Here and below derivatives with respect to the variable r will be denoted by a prime, derivatives with respect
to 8 will be denoted by a dot and derivatives with respect to ¢ will be denoted by a superscript comma.

The thermoelasticity equations in a spherical system of coordinates, taking relations (2.1) and (2.2)
into account, can be written in the form [2.3]

’

) /s
AU-2U -2Z+— [E) =, r'T’
1-2uir

2ctgh W 2 + rZ

AV+2U - - =o,rT 2.3
sin? @ sin@ 1-2u H (2.3)
. 7 o, rT
AW + 2.U _2<.:tg9 . M; + rZ %
sin®  sin0 sin“® (1-2i)sin®  sin®
where
e (sinbU') u’ T+
AU = (F*U’yY +VUVU = + o, =46 —— 2.4
i sin®  sinl@ *  i-2p T (24)
2 ’
200,

r

(u is Poisson’s ratio and a7 is the coefficient of linear expansion).

We will subject the second and third equations of system (2.3) to a further transformation, for which
we multiply the second equation by sin 0, differentiate with respect to 8 and divide by sin 6, then we
differentiate the third equation with respect to ¢ and divide by sin 6 and add the equations obtained.
We then carry out the same operation on the third equation of (2.3) as was carried out on the second
in the previous case, and we carry out the same operation on the second equation as was carried out
on the third in the previous case. As a result, instead of system (2.3) we will have

AU =2U + Z)+ wol(rPU’Y 472" = Z} = o, r* T’ (2.5)
AZ+2VU +po[r (YUY +VZ)= 0, /YT, AZ" =0

If the functions Z(r, 0, @) and Z*(r, 6, @) are obtained, it can be shown {1] that the functions V(r, 6,
¢) and W(r, 0, ¢) can be obtained from the equations
v 1 2121 _lz°|
=-—-|sin“ 6 ¥
et F e

3. INTEGRAL TRANSFORMATION OF THE EQUATIONS OBTAINED
WITH RESPECT TO THE VARIABLE ¢

The realization of the integral transformation with respect to the variable ¢ depends on what boundary
conditions are imposed on the faces ¢ = ¢; (i = 0, 1). If the displacements are specified on these, the
following boundary conditions are specified for Egs (2.5)

vl s
[sme 7

U(r.8,9,)=Z(r,0,9,)=Z"(r,6,9,)=0, i=0,1 (3.1)

U(r,o0,,¢)=Z(r,0,,0)=Z"(r,0,,¢)=0, i=0,1 (3.2)
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If the sliding clamping conditions (1.3) and (1.2) are specified, then, instead of conditions (3.1) and
(3.2), we take the following

U(r,0,9,)=2(r,08,9,)=2"(r,6,9,)=0, i=0,1 (3.3)
U(r,w,@)=Z(r0,¢)=Z"(r,0,,¢)=0, i=0,1 3.4)

In order for conditions (3.1) to be satisfied, we must apply the following integral transformation [4]
to Eqs (2.5) (assuming ¢y = 0)

9
X,(r.0)= | X(r,6,@)sinp,0dp, 1, =%’5, n=1.2,... (3.5)
0 1
with the inversion formula [4]
2 3 .
X(r,0,0)=— 3 X, (r.0)sint, ¢ (3.6)
| n=1
Here and henceforth we will use the following notation
U,(r,0) U(r,8,9)
6)= X(r,0,0)=
TN mi R TCUE ik

We take similar formulae and the same inversion formulae for Z;(r, 6) and T,(r, 6). Instead of Eqs
(2.5) we will then obtain

(LY~ VU, +2U, + 202, — norZ, — o, r’ T} =0
(r*z)y -w.9v,z, =20,V U, ~uoVi(rUy) = ~o,rV, T, (3.7
(FPZy-ViZ =0, p,o=20-pwp, K =G-4u,
where
V: £(r,8) = u? cosec’ 8f (r,8) — cosec 8 f (r,0)sin 8] (3.8)

In order for condition (3.3) to be satisfied,it is necessary to use the following integral transformation
[4] instead of integral transformation (3.5)

L3 -
X,(r.8)= | X(r.0.0)cos,pdo, I, = (—”(pﬂ, n=12... (3.9)
0 1
with the inversion formula [4]
1 2 &
X(r,e,(p)=a.xl(r,9)+— > X, (r.8)cosp,@ (3.10)
| 1 n=2

Similar formulae hold for Z;(r, ©) and 7,(r, 6).

Applying integral transformation (3.9) to Egs (2.5), we again arrive at the same Egs (3.7), in which
for p,, we must use the formula from (3.9) instead of the formula from (3.5). Boundary conditions (3.2)
and (3.4) in transformants (3.5) and (3.9) respectively reduce to the following

U,(rn0)=2Z,(r,0,)=Z,(r,0;,)=0, i=0,1 (3.11)
U,(r,w)=Z,(r,w;)=Z, (r,,)=0, i=0,1 (3.12)
If ¢y = - and @; = 7 in relations (1.1) and therefore the cone is continuous in the direction of

the variable ¢, then instead of integral transformation (3.5) and (3.9) we must use the integral
transformation



664 G. Ya. Popov

X, (r.8) = ?IE [ X(r.0.0)e™dg, n=0%1,2,... (3.13)

-n
with the inversion formula

X(r.8,9)= 3 X,(r.0)™ (3.14)

n=-o0

In transforms (3.13), Eqs (2.5) can also be written in the form (3.7), except that in formula (3.8) we
must put u, = |n|.

4. INTEGRAL TRANSFORMATION WITH RESPECT TO
THE VARIABLE 6 AND REDUCTION OF THE EQUATIONS
OBTAINED TO ONE-DIMENSIONAL EQUATIONS

In order to carry out an integral transformation with respect to the variable 6 and simultaneously satisfy
boundary conditions (3.11) and (3.12), it is necessary to use an integral transformation whose kernel
is the eigenfunction of one of the following Sturm-Liouville problems

VT, (0)+ 4T,(®)=NT;0), w,<6<w; [T,(®)=0; i,j=0,I (4.1)

where
PT,0)=Ty(w,;), [T,(8)=T, (w,)+hT(0,); i=0,1 4.2)

However, these boundary-value problems were solved in [5] for the case when ,, = m and m are positive
integers. The extension of the results obtained earlier in [5] to the case of positive non-integer numbers
L, can be carried out fairly simply using the same scheme, and we will therefore only present the final
results. As previously [5], we will change from the exgenvalues k’ (j=0,1,k=0,1,2,...) of boundary-
value problems (4.1) to the eigenvalues v = —12 + AP (j = 0,1,k =0, 1,2, ...). In this case the
differential equation from (4.1) becomes a Legendre equatlon and the eigenfunctions of the boundary-
value problems will have the form (j = 0, 1)

y:(0,v) = Pt (cosO)/ QY — Q¥ (cos®)/P*, pn=n,, v=v{, k=012, 4.3)

where PY(cos )) Qb‘(cos 9) are Legendre functions of the first and second kind on the cut [6], and the
eigenvalues vi) (j = 0, 1; &k = 0, 1, 2, ...) must be found from the equations

Qb =P - OV PY =0, p=p,, v=Vv{ (4.4)

In particular, when j = 0 we will have

QY 5 = P (cos @y )QY (cos ;) — QY (cos g ) PY (cosw, ) =0 (4.5)
v=vl k=01,.., p=p,=mn@,', n=12,..

and the integral transformations obtained [5] for the case when p, = m (and written in the form of
formulae (2.41), [5]) now take the form

g = fg(e)y,(ev)smede j=01, v=v]

o
4,
= a’y0v) = gi’)y,(e v) o

g0)= 3 5 . H=n,

k=0 "yj(e,v)” =061 (@, ;)

where
2 w) 2 .
"yj(e, v)" = I Y (8, V)sin 0406, i=01, v=v; (4.7)
o
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" T, P! (cosw)I"
ol ooy 8o i R0y Doy iy g

0" (coswg)(2v+1) v v,0 Q¥ (coswy)2v+1) dv

OUT d LR 0

1 12v ! uv i 17v " uy ® - =y

g, = 1XV W Y or - Q.. u=H,, v=v 4.
uk l(')Q{,‘(2v+l) av ! I(')Pv”(2v+l)av v ) (*+9)

The second equations in (4.8) and (4.9) hold by virtue of relations (4.5) and (4.4). For I', formula
(2.6) from [5] holds when m is replaced by u = p,,.

To reduce Eqs (3.7) to one-dimensional equations while satisfying boundary conditions (3.11), we
will use integral transformation (4.6) with j = 0, i.e. we change in (3.7) to the transforms

©, :
X (= | X, (r.0)y5(0.v)sin0dB, v=v,| (4.10)
w9
where the eigenfunctions yy(6, v), according to relations (4.3) and (4.6), will have the form
¥o(8,v) = Pt (cos9)Q! (cos ;) — O (cos B) P} (cosw ) = 0 (4.11)
v=Vv0, k=0,,.., p=pu,=mn@;', n=12,..
and satisfy the boundary condition

Yol@,,V)=0, v=vi, i=0,l (4.12)

The inversion formula for transform (4.6), by the second relation of (4.6), can be written in the form

- 0 .
Xn(r.9)=—k)=:0Xnk(r)#((gfiw)—5 (4.13)
Formulae similar to (4.10) and (4.13) hold for the transforms Z,,(r) and T,(r).
In transforms (4.10) we write Eqgs (3.7) in the form
[PUBRY =@+ NI Wy = WU Zog + ol T 1Z, = 0 r T (r)
(P Z5 (P = Nyl Zy ~ MoNyrUfy =21 NyUpy = =00, N, T (1) (4.18)

(P2Z5 (I =N,Z., =0, ay<r<a; N,=v(v+l); v=v), k=0,1,...

In order to reduce Eqs (3.7) to one-dimensional forms and to satisfy conditions (3.12), we must use
integral transformation (4.6) with j = 1, putting #; = 0 (/ = 0, 1) there. Then the eigenfunction
yx(8, V) = y1(8, v)|,,_,, by relations (5.3) and (4.2), takes the form

y.(8,v) = P¥(cos e)dico, Q) (cosw,) - Q! (cosB) diu), P! (cosm,) (4.15)

Here u; = W, and the expression for p, is taken from (3.9), and we must take as v the eigenvalues
Vi (k=0,1,2,...), which must be found, according to relations (4.4) and (4.2), from the transcendental
equation

dP! (cos ®,) dQY (cos®,) _ dQb(coswy) dP¥ (cosw;)

Q¥ = =0
Y dow, do, dw, dw, (4.16)
v=vy, k=01,..; up=p,=nr-0¢;', n=12,...
If we now introduce the transforms
) .
Xu(r)= [X,(r.0)y.(8,v)sin8d8, v=v,, k=0,1,.. 4.17)

g
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then, in these transforms (for Z,(r) and T,(r) the formulae are analogous) Eqs (3.7) are converted
into one-dimensional equations (4.14), in which the parameters v and p, must be taken as in (4.16).

The inversion formulae for transforms (4.17), by relations (4.7), (4.9) and (4.16), can be written in
the form

¥a(0,V})

* 4.18
O (®g, @) ( )

X, (r08)=—3 X, (r)
k=0

. I, dP) (cosw,)/ dw, d

_ m
W2y + AP (coswy) / dwy dv

v

v=vl, k=0L.., p=p,=nn-De, n=12..

When ¢, = -t and ¢; = 7 in relations (1.1), we arrive at the same one-dimensional equations (4.14)
in which w, = |n| and v = v{ or v = v;, depending on whether the faces 8 = w; (i = 0, 1) are rigidly
clamped or there is a sliding clamping. Here, in the first case, transforms (4.10) are taken in the
accordance with the formulae

oy
X, ()= | X,(r,0)9](8,v)sin8d0, v=v;, k=0,1,.., m=|n| (4.19)

g

The originals of these transforms are found [5] from the formulae

X"(r,6)=—§,xnk(r)—a(pﬂ—@ﬁ)—, v=v;, k=012, (4.20)
k=0 O i (@0g, @)

In formulae (4.19) and (4.20) ¢}J'(8, v) is taken in accordance with formula (3.24), while Gy, (0, ©;)
is taken in accordance with formula (2.14) from [5]; the eigenvalues v{ (k = 0, 1, 2, ...) are found from
transcendental equation (2.27) [5]. The formulae are analogous for the transforms Zn(r) and Tu(r).
In the second case, transforms (4.17) are taken in accordance with the formulae

W)
Xu(r)= [ X,(r.0)97(6,v)sin0dd, v=vi, k=01.., m=]n| (4.21)

®o
for which the inversion formulae have the form {5]

" ¢ (6,Vv)

, v=vy, k=012,... 4.22
O i (009, ;) ok ( )

X,(r8)=-F X, (
k=0

where ¢'(6, v) and o}, (wg, ©;) are taken in accordance with formulae (2.37) and (2.49) from [5], while
the eigenvalues vi (k = 0, 1, 2, ...) are the roots of Eq. (2.39) from [5].

5. FORMULATION OF THE ONE-DIMENSIONAL BOUNDARY-VALUE
PROBLEMS FOR THE AUXILIARY FUNCTIONS AND THEIR SOLUTION

To formulate the one-dimensional boundary-value problems for the auxiliary functions we must add
to the system of equations (4.14) the boundary conditions at the points r = a; (i = 0, 1). We obtain
these boundary conditions by realizing conditions (1.4). In order to do this, as previously [1], we introduce

combinations of shear stresses
1 Trofl
= + 5.1
sin@ { 1,9“ } ( )

. _,(K)Lz S
BTN r’ ®  rsin® r

o = 2uU +(1-yrU’ +puZ
! (0 -2wr

°r,0,¢) sinB1,4

t*(r,6,0)

sin Gr,w

Using the formulae
‘ (5.2)

—ocuT
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which follow from Hooke’s law in a spherical system of coordinates [2, 3], we obtain
2m=VU+r2'-2, 2m,=r2" -2" (5.3)
According to (4.1), the second and third conditions from (1.4) will be satisfied if
Ur0,9) =T (r;¢)=0, i=01 (5.4)
Using the third formula of (5.2) we can write the first boundary condition from (1.4) in the form

2“'U(r’ 0, (p) + (1 - “)rUl(r’ (VR (p) + HZ(I', w;, (p) = _(1 - 2“)“:‘%‘(9, (p)’
948, ¢) = p«8, 9) -, T(a;, 6,9), i=0,1 (5.5)

If we apply integral transformations (3.5), (3.9) and (3.12) to relations (5.3)—(5.5), and then (4.10),
(4.17) and (4.19), boundary conditions (1.4) can be written in the form

NUl@) + Zi(@) - i Zig(a) = 0,  a;Zp(a) - Zu(a) =0, i=0,1 (5.6)
2uUnda:) - (1 - WaUnla) + nZ,(a) = -(1 -2Waigim, i=0,1
Hence it follows that Z,,(r) satisfies the homogeneous boundary-value problem, and consequently
Zn( =0, Z%(r,0,¢)=0 (5.7

To set up the boundary-value problem for the functions U, (r) and Z,(r) it is convenient to introduce
the system of functions

yor) = um(r), () =rUp(r),  y2(r) = Zu(r),  y3(r) = rZydr) (5.8)
fl(r) = “;erTnk(r)’ fZ(r) = '"erTnk(r)

If we then take into account the fact that

o) =y, ) =) (FPURY =r(rUy) + rUy

and introduce the vectors and matrices

yo(r) 0 0
»n(r) H(r) 0
r f(r)= \ = 5.9
yin= Y2 () 0 Y A00nk (59)
y1(r) fo(r QG
0 1 0 0 N, 0 1 -l
2+ :IN -1 :I o :l
- RN [Ty AT l»lo, A= 0 0 0O (5.10)
0 0 0 1 2 1-p p O
2u.N,  HoN, H.N, -1 ] 0 0 O

and also the matrix B, which is obtained from A by interchanging the first two and the last two rows,

then, to find the functions U, (r) and Z,,(r) we arrive at the vector boundary-value problem
ry’(r)_PkY(r)=apf(r)’ ao<r<a, (511)
Uly(r)]= Ay(ay) + By(a)) = —(1-2u)y

To solve the differential equation from (5.11) we apply to it the Mellin integral transformation

148 r)

I f()

0
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first extending the right-hand by zero up to the interval (0, «<). As a result we obtain
a) d
yin=a, | L)f(p)—g’ Q=r=<aq
ap p p

where p~'®(r/p) is the fundamental matrix-function {7, 8] of differential equation (5.11) defined by the
formula

®(x)= 2—:;.:1:(—s1 -P) 'xVds = 2—L—ZJ:(§1 -P) 'k, x= é (5.12)
To calculate the last integral we bear in mind that {9, 7]
EI-P)" =4,07'8),  10,(8)=EI-P)A,
0u(6) = deiel~B) = [T -, =& 422" - (5.13)

(2N, +DEZ =N, + DE+ Ny(N, =2), v=v,, k=0,12,...

where v, are the roots of transcendental equations (4.5) and (4.16) or Eqs (2.27) and (2.39) from [5].
Here the roots of the characteristic polynomial Q4(&) will be defined by the formulae

Ei=—=2-v,, §=-1+v,, Ey=-v,, & =1+y, (5.14)

We will represent the characteristic matrix Ag in the form {9, 7]
3
A €)= TEAY, (5.15)
j=0

The numerical matrices A% (i =0,1,2,3) are obtained by substituting expression (5.15) into the second
equality of (5.13) and equating coefficients of powers of £. As a result we obtain

AP =1, AP =21+P, &Y =2P +P2-(2N,+DI
A =2P2 +P] (2N, + )P, = 2(N, + DI
where we also have the following formula for A%
AP =N (N, =P, v=v,, k=0,12,...

which can serve to monitor the calculations.
From relations (5.13) and (5.15) we have

3 j
1-p)' = 5 A%, -5
©1-F E’o I 0,(8)

Substituting this expression into (5.12), we obtain

3 j
D(x)= 3 A(Qj‘Pj(x), (Pj(x)=("%) o(x)

j=0

—Y+ioe &

9(x) = - J :
27y (§ =& NE—E2 )G~ E3)(E — E4)

Ifvy>-viandv, > 1(k=0,1,2,...), then, from the theorem on residues, taking relation (5.14) and
the second equation of (5.16) into account, we obtain

| { ~vYx™, x>1 }_ 1 {(—z—v)’x““, x>‘H (5.17)

2(2v+1){2v—l (v=1Yx""" x<1f 2v+3|(v-1x", x<i

&, x=L 5,
& x 5 (5.16)

(Pj(x)=

Jj=0123 v=v,, k=012,
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In order to obtain a solution of boundary-value problem (5.11) with non-zero boundary conditions,
it is necessary [7, 8] to construct Green’s matrix G(r, p) and the basis matrix function W(r). We will
start by constructing the latter. To do this [7, 8] we must first solve the matrix differential equation

rZ’(r-PZ(r=0 (5.18)

Using Cauchy’s theorem, it can be shown that the matrix (T is a closed contour, enveloping all the
zeros of the function Q4(&))

v/ =——1 P o = A"(g)@ 5.19
(= §<£ ) rodE = i&@ dg (5.19)

is [7, 8] a solution of Eq. (5.18). Substituting expression (5.15) into (5.19) and taking expressions (5.14)
into account, as when evaluating the integral (5.12), we arrive at the formula
vV —v=1 V!
(=v)r (v=1)Yr +
2v -1

zm—z AP W(r),  2Qv+DW(r)=

L D P — (=1 (v 2y rY 2
2v+3

., J=0123 v=v,, k=0,,... (5.20)

Since the matrix ¥(r) must satisfy the boundary-value problem [7, 8]
¥(r)-PR¥(r)=0, aqgy<r<a, UW¥WNI=I (5.21)

it can be shown by a direct check that
W(r)= Z(r)(UZ(")) ™ (5.22)

It can also be shown by a direct check [7, 8], that the matrix

ool

satisfies all the conditions imposed on Green’s matrix of boundary-value problem (5.11). Hence, the
solution of the latter can be written in the form

a
y(n=o, [G(r,p)f(P)dp—(1-2LW(r)y, ag<r<aq (5.24)

a0

6. FINDING THE DISPLACEMENT FIELD
FROM THE AUXILIARY FUNCTIONS

Using expressions SS .8), formula (5.24) enables us to find the transforms of the displacement
u, = U(r, 6, @)}(2G)™" and of the auxiliary functlon Z(r, 6, ¢). In order to obtain the transforms of the
remaining displacements ug = V(r, 8, 9)(2G™), uyo = W(r,8,0)(2G" ") we will proceed from differential
equations (2.7) taking identities (5.7) into account. We will then formulate the boundary conditions
for these equations such that the conditions for there to be no displacements on the faces ¢ = ¢,
0 = w; (i = 0, 1) or the sliding-clamping conditions (1.2) and (1.3) are completely satisfied.

When solving Eqs (2.17) it is convenient to introduce the notation

. . . Vi(r.6,¢) V(r,0,¢)
Y (r,0,0)=sin8Y(r,0,¢); VY (r.0,0)= ,  Y(r,0,0)= 6.1
¢ ¢ o= . (.0, (p)" rO@=ly o o) (6.1)
They can then be written in the form
. 1 [in?6zy
VY ' =—— 6.2
sin® VA 6-2)
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If the conditions for the displacements on the surfaces @ = ¢;, 0 = ; (i = 0, 1) to be zero are satisfied,
we must apply the following boundary conditions to Eqs (6.2) (everywhere henceforthi = 0, 1;n = 1,
2,.5k=0,1,2,.)

Y'(r0,9)=0, ¢;=0, wy<0so0; Y (o,0)=0, 0<s¢<g, 6.3)

We first apply integral transformation (3.5) to boundary-value problems (6.2) and (6.3), i.e.

* ¢ * . nm
Y, (r.0)= [ Y'(r,0,@)sinu,do, p,=— (6.4)
0 0
We thereby obtain
- 1 [(sin®0Z, ) A .
-VY =— N Zp= | Zeosp,pdg; Y, (r,w,)=0 6.5
ol gt | 7= e o) ©)

(the functions Z, are given by (3.5)).
We will use integral transformation (4.10) to solve boundary-value problems (6.5). We thereby obtain

1“4
- nk(r)_—

Nv wojl ~Hn

sin” 0Z,y4(6,V)

d0, v=v .
ASNCAY) ¢ (68)

The formula for the transform u(r) follows from relations (5 24) and (5.8), in which we must put
v = vy, U=, = nne;'. From the transforms i, V. and W, using inversion formulae (4. 13) and
then (3.6), we obtain U(r, 8, ), V'(r, 8, ¢), W(r, 8, 9). As a result, taking relations (6.1) and (2.1) into
account we obtain the displacement field for the problem in explicit form, when the displacements are
specified on the surfaces ¢ = ¢; and 6 = w,.

For the case when @y = -1 and @, = = in conditions (1.1), while, as previously, the displacements
are specified on the surface 6 = ,, the formulae obtained must be corrected as follows. The transform
Uun(r), as previously, is found from formulae (5.24) and (5.8), in which v = vt and p = |n|. When
calculating ¥, and Wy, instead of transform (6.4) we must take

* l f * 1
Y, (r,0)=— [Y'(r,8,9)e”"%do 6.7)
21,

Then, in Eq. (6.5) we must take —in instead of u,, while the transforms Z, and Z;, are replaced by
transform Z,,, defined by (3.13). We must also make this change in formulae (6 6), additionally replace
yo(e v) by ¢’(6, v) and take into account that v = v{. From the transforms obtained u,, Vi, Wi, using
inversion formulae (4.18) and then (3.14), we obtain their originals and thereby obtain explicit formulae
for the required displacement field.

We will now consider the case of sliding clamping, when conditions (1.2) and (1.3) must be satisfied.
If we take notation (2.1) and (6.1) into account, conditions (1.3) can be written in the form

W*(r,G,cpi)=0, W, =0=< 0w,
U (r.8,0,)+r(W(r,8,0,)r™y =0 (6.8)
sin G[Sin‘2 oW (r, 8,.9,)) +sin™? BV*'(r,Q,(p,») =0, wy=0=o0,

Since the condition U'(r, 6, ¢;) = 0 s already satisfied by virtue of integral transformation (3.9), conditions
(1.3) will be completely satisfied if, in addition to conditions (6.8), the following condition is satisfied

Vi(r.6,0,)=0, w,s06<0, (6.9)
In the same notation, conditions (1.2) can be written in the form

Virw,0)=0, @y<¢=<g, (6.10)
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U(r,0;,0)+ 2V (rw,,9)] cosec w; =0
W (r,w;, @)= 2W (r,0,,9)ctgw, + V" (r,0;, 9)cosec; =0 (6.11)

Since the condition U (r, w;, @) = 0 is already satisfied by virtue of integral transformation (4. 17),
conditions (1.2) will be completely satisfied if, in addition to condition (6.10) the following equality is
satisfied

W (r,o,0)-2W (r.0,0)ctgw, =0, @y <@=<g, (6.12)

Hence, we must add boundary conditions (6.8)—(6.10) and (6.12) to differential equations (6.2).

To solve the above boundary-value problems (¢, = 0) we will use integral transformations (3.9) and
(3.5). As a result, these boundary-value problems are converted into the following one-dimensional
problems

-VIV =cosecO(sin’ 0Z,), W, =(n-hre;', V' (rw)=0 (6.13)
* * P nm *. *
VoW, =u, [ Zcosp,odg, 1, :ﬁT, W' (r,w,)=2W, (r,0,)ctgw; =0 (6.14)
0 1

(the expression for the function Z, is taken according to integral transformation (3.9)).
We will solve boundary-value problem (6.13) using integral transformation (4.6) withj = 0. As a result
we obtain

w;
V,,',c(r)=--NL | Z,(r,0)y,(6,v)sin’ 040, v =V} (6.15)

v Wo

To solve boundary-value problem (6.14) we will use integral transformation (4.6) with j = 1, where
we put h; = -2 ctg ; and u = w, = ang;’ in formulae (4.3), (4. 4) and (4.9), which define the
elgenfunctlons and elgenvalues v. This must also be done in the inversion formula

o0 * 1
W (r.0)=— 5 HulOn©®ve) (6.16)
k=0 Oy (o, ;)

Application of integral transformation (4.6) with j = 1 to boundary-value problem (6.14) leads to the
formula

“’1 ¢

(0, Vk)Sln 08dBdo

*
W (r) =
vV Wg 0

We obtain the transform u,,(r), as previously, from formulae (5.24) and (5.8), in which we must take
the following values for the parameters pu and v

p=p, =(r=-hrg;', v=v;

If the transforms u,,(r), V,u(r) and W, (r) obtained are inverted using the inversion formulae (4.18),
(4.13) and (6.16), and also (3.10) and (3.6), we obtain the exact solution of the problem in the case of
sliding clamping along the surfaces ¢ = ¢, and 6 = ;.

When, under conditions (1.1), ¢y = —x, ¢; = n and on the surfaces 8 = o, sliding clamping occurs,
we must introduce these corrections into the solution obtained. Instead of integral transformations (3.9)
and (3.5) we must take integral transformation (6.7). As a result, Eqs (6.2) become Eqs (6.5), in which
we must take ~in instead of p,, while Z, and Z,, must replace the transform Z,,, defined by (3.13). The
boundary conditions for the differential equations obtained, by relations (6.10) and (6.11), are written
in the form

Vi(r,w)=0, W (ro)-2W(ro)cgw,=0
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These boundary conditions necessitate that the following integral transformations must be applied
to the boundary-value problems obtained instead of integral transformation (4.6) when j = 0 and
Jj=1

)

Y (r) = J. V, (r,0)97(6,v})

RTINS (17
" Vi

The expressmns for the eigenfunctions (6, v{) and ¢"(6, v{) and the equations for determining the
eigenvalues v{, v} are given by (2.24), (2.27) and (2.31), (2.34) from [5], where, in the last two, we must
put

h = -2ctgw, (6.18)
The inversion formulae for transforms (6.17) have the form [5]

Vu(r), e=a
W, (r), e=b

V(r0)=-5 2OV

6.19
k=0 O ik (00, ©) ( )

The expression for 6% (g, 0;) is given by (2.28) from [5), while 65, (w, @) is given by (2.40) from (5],
in which we must take relation (6.18) into account.

The application of integral transformation (6.17) to the above-mentioned boundary-value problems
for V,(r, 8) and W,{(r, 8) enabled us to obtain their transforms in the form

sin’ 8¢, (8,v), v=v;

b

x e
Yu(ry=—J2,(r.8
‘ j )sinZB(p;,"(e,v), v=v,

vV ®q

We obtain the transform U,,(r), as previously, from formulae (5. 24) and (5. 8) in which we must take

= |n| and v = v;. From the transforms obtained U,(r), Vu(r), Wo(r), using inversion formulae (4.18),
(6 19) and (3.14), we obtain their originals and thereby obtain explicit formulae for the displacement
field.

Hence, we have obtained exact solutions for all versions of the problems. As previously [S], we can
mention numerous special cases of the problems solved here.
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