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EXACT SOLUTIONS OF SOME MIXED PROBLEMS 
OF UNCOUPLED THERMOELASTICITY FOR 
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(Received 27 Jnne 2001) 

An elastic body of finite dimensions in the form of a truncated hollow circular cone with a groove along the generatrix is considered. 

The uncoupled problem of thermoelasticity is formulated for this body for different types of boundary conditions on all the surfaces. 

These are the conditions for specifying the displacements or sliding clamping on surfaces with fixed angular coordinates and the 

conditions for specifying the stresses on surfaces with a fixed radial coordinate (shear stresses are assumed to be zero). It is assumed 

that the temperature is a specified function of all the spherical coordinates. Some auxiliary functions, related to the displacements, 

are introduced first, and equations for these functions are then derived using Lame’s equations. A finite integral Fourier 

transformation with respect to one of the angular variables is then employed. After this, by solving certain Sturm-Liouville 

problems, a new integral transformation is constructed and is applied to the equations with respect to the other angular variable. 

As a result a one-dimensional system of differential equations is obtained, to solve which an integral Mellin transformation is 

employed in a special way. Finally, exact solutions of some problems of thermoelasticity are constructed in series for this body, 

0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEMS 

We consider steady problems of uncoupled thermoelasticity for a body occupying a region described 
in a spherical system of coordinates (r, 0, cp) by the relations 

It is assumed that the temperature field T(r, 8, cp), obtained from the solution of the fairly simple 
harmonic boundary-value problem, is known. The displacements ~1, ue and ~1~ or the conditions of sliding 
clamping 

4J ls’w; = 0, rer II+ = re$, It+ = 0; i = 0, I (1.4 

are given on the conical surfaces 8 = oi (i = 0, 1). On the plane surface cp = cp; (i = 0, 1) either the 
displacements are specified or also the conditions for sliding clamping 

up IqXIpi = 0, qpr I,=q = qpe lIpqi = 0; i=O,l (1.3) 

The conditions may be arbitrary on the spherical surfaces r = a, (i = 0, l), but to fix our ideas we will 
take the conditions of the first fundamental problem 

We construct exact solutions of these problems below. 

2. TRANSFORMATION OF THE THERMOELASTICITY EQUATIONS BY 
INTRODUCING NEW UNKNOWN FUNCTIONS 

Following the approach proposed earlier [l], instead of the displacements (G is the shear modulus) 

2Gu, = u, 2Gus = V, 2Gu, = W (2.1) 
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We will introduce the functions 

(2.2) 

Here and below derivatives with respect to the variable r will be denoted by a prime, derivatives with respect 
to 8 will be denoted by a dot and derivatives with respect to cp will be denoted by a superscript comma. 

The thermoelasticity equations in a spherical system of coordinates, taking relations (2.1) and (2.2) 
into account, can be written in the form [2.3] 

= a,r2T’ 

AV+2U’_?%?Ws -Y+A=a,rT’ 
sin20 sin0 I-2p 

(2.3) 

where 

(2.4) 

2 _ (r2W’ + z 
-- 

r2 

(u is Poisson’s ratio and or is the coefficient of linear expansion). 
We will subject the second and third equations of system (2.3) to a further transformation, for which 

we multiply the second equation by sin 8, differentiate with respect to 9 and divide by sin 8, then we 
differentiate the third equation with respect to cp and divide by sin 8 and add the equations obtained. 
We then carry out the same operation on the third equation of (2.3) as was carried out on the second 
in the previous case, and we carry out the same operation on the second equation as was carried out 
on the third in the previous case. As a result, instead of system (2.3) we will have 

AU-2(U+ Z)+p,,[(r2U’)‘+rZ’- Z) =apr2T’ 

AZ+2VU + p,,[r-‘(VUr2)‘+ VZ] = a,rVT, AZ* = 0 

(2.5) 

If the functions Z(r, 8, cp) and Z*(r, 8, cp) are obtained, it can be shown [l] that the functions P’(r, 8, 
cp) and W(r, 8, cp) can be obtained from the equations 

(2.6) 

3. INTEGRAL TRANSFORMATION OF THE EQUATIONS OBTAINED 
WITH RESPECT TO THE VARIABLE cp 

The realization of the integral transformation with respect to the variable cp depends on what boundary 
conditions are imposed on the faces cp = cpi (i = 0, 1). If the displacements are specified on these, the 
following boundary conditions are specified for Eqs (2.5) 

U(r,O,(p;) = Z(r,8,(pi) = Z*(r,8,(pi) = 0, i = 0,l (3.1) 

(3.2) 
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If the sliding clamping conditions (1.3) and (1.2) are specified, then, instead of conditions (3.1) and 
(3.2) we take the following 

U’(r,0,cpi)=Z’(T,e,(Pi)=Z*‘(T,e,(Pi)=O, i=O,l (3.3) 

U’(r,wi,cp) = Z’(r,w;,cp) = Z*‘(r,oi,cp) = 0, i=O,l (3.4) 

In order for conditions (3.1) to be satisfied, we must apply the following integral transformation [4] 
to Eqs (2.5) (assuming cpo = 0) 

CPI 
X,(r,O)= j X(r,O,cp)sinP,@T, u, =“71, n = 1,2,... (3.5) 

0 ‘PI 

with the inversion formula [4] 

X(r,@q)=t z,X,(r.@sinl.t,cp (3.6) 
n 

Here and henceforth we will use the following notation 

x,(r.e)= 
u,(rAV /I II X(r, 8, cp) = 

Wr, 0, cp) II I/ etc 

z,(r,e) zW,cp) . 

We take similar formulae and the same inversion formulae for Zz(r, 0) and T,,(r, Cl). Instead of Eqs 
(2.5) we will then obtain 

(r*U:)‘- p;‘[ViU, + 2U, + 2jt’Z, -porZL -a,r*T,‘] = 0 

(r*ZA)‘-p,ViZ,, -2u.V:(/,, -poV~(rlJ~)= -a,rVzT, 

(r*Z,“)‘-VzZ,‘=O; jl, =2(1-p)po, p’=(3-4p)po 

(3.7) 

where 

Vzf(r,e)=pi cosec*ef(r,8)-cosec8[f’(r,B)sine]’ (3.8) 

In order for condition (3.3) to be satisfied,it is necessary to use the following integral transformation 
[4] instead of integral transformation (3.5) 

X,(r,e)= y X(r,8,cp)cosp,@p, 
~ = (n-1)x n -, n=l,2... 

0 ‘PI 

with the inversion formula [4] 

x(r,e,cp) = ~X,(r,e)+~“~2x~(r,e)cos~~~ 

(3.9) 

(3.10) 

Similar formulae hold for Zz(r, 0) and T,(r, 0). 
Applying integral transformation (3.9) to Eqs (2.5) we again arrive at the same Eqs (3.7), in which 

for p,, we must use the formula from (3.9) instead of the formula from (3.5). Boundary conditions (3.2) 
and (3.4) in transformants (3.5) and (3.9) respectively reduce to the following 

Un(r,wi)= Zn(r,wi)= Z,‘(r,w;)= 0, i = 0, I (3.11) 

U~(r,Wi)=Z~(r,coi)=Z~‘(r,~i)=O, i=O,I (3.12) 

If cpo = -71 and cpr = rt in relations (1.1) and therefore the cone is continuous in the direction of 
the variable cp, then instead of integral transformation (3.5) and (3.9) we must use the integral 
transformation 
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1¢ 

X,(r,0) = ~ --I ~X(r,O, cp)e-i"t°dcp, n = 0,+1,+2 .... (3.13) 
211: - n  

with the inversion formula 

X(r,0, (p) = ~.X,(r,O)e i"~ (3.14) 

In transforms (3.13), Eqs (2.5) can also be written in the form (3.7), except that in formula (3.8) we 
must put It, = I nl. 

4. I N T E G R A L  T R A N S F O R M A T I O N  W I T H  R E S P E C T  TO 
T H E  VARIAIBLE 0 AND R E D U C T I O N  OF T H E  E Q U A T I O N S  

O B T A I N E D  TO O N E - D I M E N S I O N A L  E Q U A T I O N S  

In order to carry out an integral transformation with respect to the variable 0 and simultaneously satisfy 
boundary conditions (3.11) and (3.12), it is necessary to use an integral transformation whose kernel 
is the eigenfunction of one of the following Sturm-Liouville problems 

-V*Tj (O)+ ~ Tj (0)= )~2T)(0), ¢.o0 < 0 < o),; /,)~(0) = 0: i , j  = 0,1 (4.1) 

where 

l°To(O) = To(OJi), l]Tx(O ) = Tl(c.oi)+hiT](r..o,); i=  O,1 (4.2) 

However, these boundary-value problems were solved in [5] for the case when It, = m and m are positive 
integers. The extension of the results obtained earlier in [5] to the case of positive non-integer numbers 
P-n can be carried out fairly simply using the same scheme, and we will therefore only present the final 
results. As previously [5], we will change from the eigenvalues 3.~ ) (j = 0, 1; k = 0, 1, 2 . . . .  ) of boundary- 
value problems (4.1) to the eigenvalues v~/) = -1/2 + ~,~) (j  = O, 1; k = O, 1, 2 . . . .  ). In this case the 
differential equation from (4.1) becomes a Legendre equation and the eigenfunctions of the boundary- 
value problems will have the form (j = O, 1) 

yi(0,v)= Pv~(cosO)l[Q~v -Q~v(cosO)l[Pv ~, It =it, ,  v=v~/),  k =0,1,2 .... (4.3) 

where Pv~(cos 0), Q~(cos 0) are Legendre functions of the first and second kind on the cut [6], and the 
eigenvalues v~Y~(j = 0, 1; k = 0, 1, 2 . . . .  ) must be found from the equations 

IJot'l'lJg")ll IJg')l'tlJD~" = O, It = It,, V = V~ j) (4.4) 
~'~vO,j ~- " 0 '  V "1 ~ V  - - * 0 ~ : v ' l '  V 

In particular, when j  = 0 we will have 

~ . o  = P~ (c°s°~o)Q~ (c°s °~l) - Q~(c°s°~o)Pv~(c°s°~l) = 0 

v = v k  ,o k=O,I, . . . ,  I t = i t ,  =nn~p~ l ,  n= l ,2 , . .  

(4.5) 

and the integral transformations obtained [5] for the case when g,, = m (and written in the form of 
formulae (2.41), [5]) now take the form 

CO I 

g~J) = Sg(O)yj(O,v)sinOdO, j = 0,1, v = v~ 
oJ 0 

g(O)= ~ g~J)yj(O,v)=_ ~, g~Y)yj(O,v) 
(j) k:0 ily (0, v)[ 2 ,=0%, (¢o0,¢o,) 

It = i t ,  

(4.6) 

where 

lyj(O,v) 2=~'y~(O,v)sinOdO, j =  0,1, v =v ~  (4.7) 
co 0 
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Q;(cosq &I,, -0; = ~ d&L e (cos 0, r,., 
Q, (coso,)(~v+ I) av 

32% p=p”, 
v,O Q~(coso,,)(2v+1) & v,O 

v=v; (4.8) 

(4.9) 

The second equations in (4.8) and (4.9) hold by virtue of relations (4.5) and (4.4). For TPV formula 
(2.6) from [5] holds when m is replaced by p = u,,. 

To reduce Eqs (3.7) to one-dimensional equations while satisfying boundary conditions (3.11), we 
will use integral transformation (4.6) with j = 0, i.e. we change in (3.7) to the transforms 

Xnr(r)=Ljl X,(r,8)yo(0.v)sin8de, v=v{ (4.10) 

00 

where the eigenfunctionsyo(8, v), according to relations (4.3) and (4.6) will have the form 

yo(e,~)=P~(COSe)Q~(COSO,)-Q~(COSe)P~(COS~,)=o 

v=v;, k=O,l,..., /.L=/.L,, =xncp;‘, n= 1,2,... 

and satisfy the boundary condition 

y,(e.+,v)=O. v=v;, i=O,l 

(4.11) 

(4.12) 

The inversion formula for transform (4.6) by the second relation of (4.6), can be written in the form 

xncr,e) = - 2 x,,(~) Yo(@Vi) 
I=0 ~0,,(~0JJh) (4.13) 

Formulae similar to (4.10) and (4.13) hold for the transforms Z,*,(r) and Tnk(r), 
In transforms (4.10) we write Eqs (3.7) in the form 

[r2Z~,(r)l’- N,LZ,,~ - poN,rULk - ~I.LNJJ,,~ = -a,rN,T,,(r) 

[r2Z,$(r)]‘- N,Zzk = 0, a0 < r < a,; N, =v(v+l); v=v;, k=O,l,.. 

(4.14) 

In order to reduce Eqs (3.7) to one-dimensional forms and to satisfy conditions (3.12), we must use 
integral transformation (4.6) with j = 1, putting h; = 0 (i = 0, 1) there. Then the eigenfunction 
y,(B, v) = ~~(8, v) Ih,=,,, by relations (5.3) and (4.2) takes the form 

(4.15) 

Here pi = u,, and the expression for c(n is taken from (3.9), and we must take as v the eigenvalues 
vz (k = 0, 1,2, . . .), which must be found, according to relations (4.4) and (4.2), from the transcendental 
equation 

*,, ~ dP,!‘(coqJ dQ:(cosq 1 
” 

dQt(cos~o) dP:(cosq) = o 

dao do, - do, dw 

v=v;, k =O,I,...; J.l=pL, =rc(n-I)& n = 1,2,... 

If we now introduce the transforms 

Xnk(r)= ~X,(r,B)y,(8,v)sinBdB. v=v;, k =O,l,.. 

a0 

(4.16) 

(4.17) 
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then, in these t ransforms (for Z2k(r) and Tnk(r) the fo rmulae  are analogous)  Eqs (3.7) are conver ted  
into one-d imens iona l  equat ions  (4.14), in which the p a r a m e t e r s  v and lan must  be taken as in (4.16). 

The  inversion fo rmulae  for t ransforms (4.17), by relat ions (4.7), (4.9) and (4.16), can be wri t ten in 
the form 

X , ( r , 0 ) = -  ~. X,k (r ) .Y'(O' v~ ) (4.18) 
k=0 ~w, (¢°0, o3~ ) 

, r~.vaP~(cosoo,)/d¢o, d n~ 

-ff~tk - (2v + I)dPv ~ (cos 0~ o) / do) 0 dv 

v = v ~ ,  k = 0 , 1  ... . .  I . t = ~ , = n ( n - 1 ) ~ 0 ~  -I, n = l , 2  .... 

When  % = -r t  and % = rt in relat ions (1.1), we arrive at the same one-d imens iona l  equat ions  (4.14) 
in which ~tn = In l and v = vT, or v = v~, depend ing  on whe the r  the faces 0 = co i (i = 0, 1) are rigidly 
c lamped  or there  is a sliding clamping.  Here ,  in the first case, t ransforms (4.10) are taken in the 
accordance  with the formulae  

O) I 

X,k( r )=  ~X,(r,O)cp~(O,v)sinOdO, v = v ~ ,  k = 0 , 1  ... . .  m = l n l  (4.19) 
o) 0 

The  originals of  these t ransforms are found [5] f rom the formulae  

" "r" ~7 (0 '  v) ~ k = 0,1,2 .... (4.20) Xn(r,O)='--k~=oX, kt ) ~ .  - -  , V = V  k, 
Omk (COo, 0~l ) 

In fo rmulae  (4.19) and (4.20) q)m(0, v) is t aken  in accordance  with formula  (3.24), while oamk(030, o)1) 
is taken in accordance  with formula  (2.14) f rom [5]; the eigenvalues v~, (k = 0, 1, 2 . . . .  ) are found f rom 
t ranscendenta l  equaUon (2.27) [5]. The  fo rmulae  are analogous  for the t ransforms  Znk(r ) and T,k(r). 
In the second case, t ransforms (4.17) are taken  in accordance  with the fo rmulae  

e l  
c X,k(r) = ~X,(r,O)cp~'(O,v)sinOdO, v = v k ,  k = 0 , 1  ... . .  m = l n [  (4.21) 

OJ o 

for which the inversion formulae  have the fo rm [5] 

X.(r,e) ~.Xnk(r) ~O~"(O,v) _ c = -  , v - v  k, k = 0 , 1 , 2  .... (4.22) 
~=o o~ ,  (¢Oo, co, ) 

where  ~0~(O, v) and ~,,(co0, coj) are taken  in accordance  with formulae  (2.37) and (2.49) f rom [5], while 
the eigenvalues v~ (k = 0, 1, 2 . . . .  ) are the roots  of  Eq. (2.39) f rom [5]. 

5. F O R M U L A T I O N  O F  T H E  O N E - D I M E N S I O N A L  B O U N D A R Y - V A L U E  
P R O B L E M S  F O R  T H E  A U X I L I A R Y  F U N C T I O N S  A N D  T H E I R  S O L U T I O N  

To formula te  the one-d imens ional  boundary-va lue  p rob lems  for  the auxiliary funct ions we must  add 
to the system of equat ions  (4.14) the boundary  condit ions at the points  r -- a i (i = 0, 1). We obtain 
these boundary  conditions by realizing conditions (1.4). In order  to do this, as previously [1], we introduce 
combina t ions  of  shear  stresses 

= + x,~ (5.1) 
[[x*(r.0.~0)[I ~ [ l l s i n O X r ~  - x,o 

Using the formulae  
i ¢ 

2x,.0 = r + - - ,  2x, v = - - +  
r r s in0  

21.tU + (! - la)rU' + I.tZ 
o r = ot~tT 

(I - 21a)r 

(5.2) 
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which follow from Hooke’s law in a spherical system of coordinates [2, 31, we obtain 

2rr=VU+rZ’-z, 2rr.=rz**-z’ 

According to (4.1), the second and third conditions from (1.4) will be satisfied if 

T(T,Oj,(P) = z’(r,o;Jp) =o, i=O,l 

(5.3) 

(5.4) 

Using the third formula of (5.2) we can write the first boundary condition from (1.4) in the form 

2W(r, ($3 cp) + (1 - uW’( r, e%, cp) + cLz(C cJ,, 0) = -0 - 2cl)W,(% cp), 

4i(% cp) = Pi(f% cp) - oJ-(G~? cp)? i = 0,l (5.5) 

If we apply integral transformations (3.5), (3.9) and (3.12) to relations (5.3)-(5.5), and then (4.10), 
(4.17) and (4.19), boundary conditions (1.4) can be written in the form 

iVvU&(ai) + Z&(Ui) - UiZAk(Ui) = 0, UiZ*,;(Uj) - Zzk(Ui) = 0, i = 0, 1 (5.6) 

2lJU&(aj) - (1 - p)“iQt,(ai) + CLz,k(Qi) = -(I - 2Pkiqink, i = 03 l 

Hence it follows that Z,,(r) satisfies the homogeneous boundary-value problem, and consequently 

z;,(r) = 0, z*(r, 8, cp) = 0 (5.7) 

To set up the boundary-value problem for the functions V,&-) and Z,,(r) it is convenient to introduce 
the system of functions 

Ye(r) = &zkW, Y,(r) = rU;k(r)> h(r) = &k(r), Y3@) = r&k(r) (54 

h(r) = !dr2&k(r)y f2(r) = -&r&k(r) 

If we then take into account the fact that 

rrb(r) = YlG% rYi(r) = y3(r) (r2uAk)’ = r(r&k)’ + r&k 

and introduce the vectors and matrices 

y0(r) 0 

y(r) = 
YI W 

" ) 
r 0 

y2W ' 

f(r)= 
0' 

Y= 
ao40nk 

h(r) fi(r I al%tk 

0 I 0 0 

-1 

p 2+1h, P;‘P’ -PLI’P~ k 
= 0 0 0 1 ’ 

2w’J, PO& PIN, -1 

(5.9) 

N, 0 1 -1 

0 0 
A= 

00 

2P 1-P P 0 
(5.10) 

0 0 00 

and also the matrix B, which is obtained from A by interchanging the first two and the last two rows, 
then, to find the functions u&(r) and Z,&(r) we arrive at the vector boundary-value problem 

fy’(r) - P,y(r) = a,f(r), a0 c r < a, 

W(r)1 = AY@, I+ By@, I= -(I - 2p)y 

(5.11) 

To solve the differential equation from (5.11) we apply to it the Mellin integral transformation 



668 G. Ya. Popov 

first extending the right-hand by zero up to the interval (0, -). As a result we obtain 

where p-‘cP(r/p) is the fundamental matrix-function [7,8] of differential equation (5.11) defined by the 
formula 

(5.12) 

To calculate the last integral we bear in mind that [9, 71 

(!I- Pk )-I = A;&(5), IQ&) = &I- Pk )A; 

Q~(C>=det<@-P~)= fi(5-Cj)=54 +2c3 - (5.13) 

-(2N,+1)52-2(N,+1)5+N,(N,-2), v=v~, k=0,1,2 ,... 

where vk are the roots of transcendental equations (4.5) and (4.16) or Eqs (2.27) and (2.39) from [5]. 
Here the roots of the characteristic polynomial Q&J will be defined by the formulae 

5, =-2-vt, 52 =-l+vlr, t3 =-vL, k4=1+vlr (5.14) 

We will represent the characteristic matrix A; in the form [9, 71 

Al(t)= ic’Ay!j 
j=O 

(5.15) 

The numerical matrices Aik) (i = 0, 1,2,3) are obtained by substituting expression (5.15) into the second 
equality of (5.13) and equating coefficients of powers of 5. As a result we obtain 

A6”‘=1, Ls(:)=21+P k, Ay) = 2Pk + P; -(2N, + 1)1 

A:“’ = 2P; + P; - (2N, + l)P, - 2( N, + I)1 

where we also have the following formula for A($’ 

A?)=-N,(N,-2)P,-‘, v=vk, k=0,1,2 ,... 

which can serve to monitor the calculations. 
From relations (5.13) and (5.15) we have 

(cl- pk)-’ = 2: A(‘“?. 5’ 
/=o 3 ’ Q,(5) 

Substituting this expression into (5.12) we obtain 

(5.16) 

If -?I > -vk and vk > 1 (k = 0, 1, 2, . ..). then, from the theorem on residues, taking relation (5.14) and 
the second equation of (5.16) into account, we obtain 

(-v>‘x-“, x > I (-2-v)+“, X> I 

(v-I)j_?‘, X<l (v-l)jx”-‘, xc1 
(5.17) 

j=O,l,2,3; v=vk, k=0,1,2. 9 . 
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In order to obtain a solution of boundary-value problem (5.11) with non-zero boundary conditions, 
it is necessary [7, 81 to construct Green’s matrix G(r, p) and the basis matrix function ‘U(r). We will 
start by constructing the latter. To do this [7, 81 we must first solve the matrix differential equation 

rZ’( r) - PkZ( r) = 0 (5.18) 

Using Cauchy’s theorem, it can be shown that the matrix (F is a closed contour, enveloping all the 
zeros of the function Q&)) 

(5.19) 

is [7,8] a solution of Eq. (5.18). Substituting expression (5.15) into (5.19) and taking expressions (5.14) 
into account, as when evaluating the integral (5.12) we arrive at the formula 

Z(r) = i A’;~jWj(r), 2(2V+ l)W,(r) = 
(_v)~ r-v _ (v _ I)i rv-1 

+ 
j=O 2v-1 

+ (v + l)j rv+’ -(-l)j(v+2)jr-“-* 

2v+3 
, j=O,l,2,3; v=vL, k=O,l . ,. 

Since the matrix Y(r) must satisfy the boundary-value problem [7, 81 

r*‘(r)- Pkw(r) = 0, a0 < r < a, ) U[W(r)] = I 

it can be shown by a direct check that 

*T(r) = z(r)(H1z(r)l)-’ 

It can also be shown by a direct check [7, 81, that the matrix 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

satisfies all the conditions imposed on Green’s matrix of boundary-value problem (5.11). Hence, the 
solution of the latter can be written in the form 

a(J < r < a, (5.24) 

6. FINDING THE DISPLACEMENT FIELD 
FROM THE AUXILIARY FUNCTIONS 

Using expressions 5.8 , 
( ) 

formula (5.24) enables us to find the transforms of the displacement 
u, = &-, 0, q)(2G)- and of the auxiliary function Z(r, 8, cp). In order to obtain the transforms of the 
remaining displacements ue = V(r, 0, (p)(2G-‘), uV = W(r, 8, (p)(2G-‘) we will proceed from differential 
equations (2.7) taking identities (5.7) into account. We will then formulate the boundary conditions 
for these equations such that the conditions for there to be no displacements on the faces cp = Cpi, 
9 = Wi (i = 0, 1) or the sliding-clamping conditions (1.2) and (1.3) are completely satisfied. 

When solving Eqs (2.17) it is convenient to introduce the notation 

Y*(r,e,cp)=sineY(r,e,cp); Y’(r,O,(p)= (6.1) 

They can then be written in the form 

Vy* = 1 (sin*OZ). 

-II II sin8 Z* 
(6.2) 
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If the conditions for the displacements on the surfaces cp = cpi, 8 = Oi (i = 0,l) to be zero are satisfied, 
we must apply the following boundary conditions to Eqs (6.2) (everywhere henceforth i = 0, 1; n = 1, 
2, . . . . k = 0, 1, 2, . ..) 

Y*(r,e,q$)=O, (po=o; W,G8~6+, Y*(r,wi,cp)=O, oscpscp, (6.3) 

We first apply integral transformation (3.5) to boundary-value problems (6.2) and (6.3) i.e. 

Yn*(r,8) = ‘,’ Y*(r,8,cp)sinp,cpdqx p, ,E 

0 91 

We thereby obtain 

Z; = “I’ Zcos&,cpdqq Y,‘(r,o;)=O 
0 

(6.4) 

(6.5) 

(the functions Z, are given by (3.5)). 
We will use integral transformation (4.10) to solve boundary-value problems (6.5). We thereby obtain 

-Y&r)=+ 
ml 

4 

sin’ eznyo(e,v) de 

II 
v = v; 

” *o -~nz~Yom9 ’ 
(6.6) 

The formula for the transform u,&) follows from relations (5.24) and (5.8) in which we must put 
v = vi, u = p,, = n?np;‘. From the transforms u,k, I$ and Wn\, using inversion formulae (4.13) and 
then (3.6), we obtain U(r, 8, cp), p(r, 8, cp), W*(r, 8, cp). As a result, taking relations (6.1) and (2.1) into 
account we obtain the displacement field for the problem in explicit form, when the displacements are 
specified on the surfaces cp = Cpi and 8 = Wi. 

For the case when cpo = -rt and cpl = n in conditions (1.1) while, as previously, the displacements 
are specified on the surface 8 = Wi, the formulae obtained must be corrected as follows. The transform 
&k(r), as previously, is found from formulae (5.24) and (5.8) in which v = vt and p = In 1. When 
calculating V,*k and Wn:, instead of transform (6.4) we must take 

(6.7) 

Then, in Eq. (6.5) we must take -in instead of u,,, while the transforms Z, and Zi are replaced by 
transform Z,, defined by (3.13). We must also make this change in formulae (6.6), additionally replace 
yo(B, v) by (p:(C), v) and take into account that v = vi. From the transforms obtained u,,k, I/t, Wn:, using 
inversion formulae (4.18) and then (3.14) we obtain their originals and thereby obtain explicit formulae 
for the required displacement field. 

We will now consider the case of sliding clamping, when conditions (1.2) and (1.3) must be satisfied. 
If we take notation (2.1) and (6.1) into account, conditions (1.3) can be written in the form 

W*(r,eV~i)=o, m. G 8s w,, 

~,(~.e,~i)+T(w*(T,e,~,)r-I)r=~ (6.8) 

sin8[sin-2eW*(r,f3,cp,)] +sinv2 ev*yr,e,cpi)= 0, 0,6es6+ 

Since the condition U(r, 8, cp;) = 0 is already satisfied by virtue of integral transformation (3.9) conditions 
(1.3) will be completely satisfied if, in addition to conditions (6.8) the following condition is satisfied 

(6.9) 

In the same notation, conditions (1.2) can be written in the form 

V’(r,o,,cp) = 0, (POCV"p% (6.10) 
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U(r,w;,(p)+ r2[r-'V*(r,Wi,(P)]1cosec~i = 0 

w* (r~Oi((P)-2W*(r,wi,cp)Ctgo, + V*'(r,Oi,(P)coSecWi =O (6.11) 

Since the condition U’(r, wi, cp) = 0 is already satisfied by virtue of integral transformation (4.17), 
conditions (1.2) will be completely satisfied if, in addition to condition (6.10) the following equality is 
satisfied 

W*‘(r,oi,cp)-2W*(r,oj,cp)Ctgoi =O, 'pO~'p~cpI (6.12) 

Hence, we must add boundary conditions (6.8)-(6.10) and (6.12) to differential equations (6.2). 
To solve the above boundary-value problems (cpo = 0) we will use integral transformations (3.9) and 

(3.5). As a result, these boundary-value problems are converted into the following one-dimensional 
problems 

-ViVn* = casec8(sin2 OZ,)‘, l.t, = (n- l)TI(pi’, Vn*(r,Oi) = 0 (6.13) 

v; w,’ = p, i’ ZcospJpdf.p, p, 2!!, Wn*‘(r,0,)-2W,*(r,oi)ctgoi =o (6.14) 
0 CPI 

(the expression for the function 2, is taken according to integral transformation (3.9)). 
We will solve boundary-value problem (6.13) using integral transformation (4.6) withj = 0. As a result 

we obtain 

v=v; (6.15) 

To solve boundary-value problem (6.14) we will use integral transformation (4.6) with j = 1, where 
we put hi = -2 ctg Oi and p = p,, = nncp;’ in formulae (4.3), (4.4) and (4.9), which define the 
eigenfunctions and eigenvalues vi. This must also be done in the inversion formula 

W,*(r,e)=- 2 w,',V)Yl@& 
k=O o:,(w,,w,) 

(6.16) 

Application of integral transformation (4.6) with j = 1 to boundary-value problem (6.14) leads to the 
formula 

We obtain the transform u,&), as previously, from formulae (5.24) and (5.8), in which we must take 
the following values for the parameters p and v 

l.l=l.l, =(n-l)ncp;‘, v=v; 

If the transforms U&Y), V,,(r) and W,,(r) obtained are inverted using the inversion formulae (4.18), 
(4.13) and (6.16), and also (3.10) and (3.6), we obtain the exact solution of the problem in the case of 
sliding clamping along the surfaces cp = cpi and 8 = w,. 

When, under conditions (l.l), cpo = -71, cpl = 7[: and on the surfaces 8 = Wi sliding clamping occurs, 
we must introduce these corrections into the solution obtained. Instead of integral transformations (3.9) 
and (3.5) we must take integral transformation (6.7). As a result, Eqs (6.2) become Eqs (6.5), in which 
we must take -in instead of pn, while Z,, and Zi must replace the transform Z,, defined by (3.13). The 
boundary conditions for the differential equations obtained, by relations (6.10) and (6.11), are written 
in the form 

Vn’(r,q) = 0, W,“(r,wi)-2W,‘(r,oi)Ctgoi = 0 



672 G. Ya. Popov 

These boundary conditions necessitate that the following integral transformations must be applied 
to the boundary-value problems obtained instead of integral transformation (4.6) when j = 0 and 
j=l 

(6.17) 

The expressions for the eigenfunctions (p:(C), v$ and (pr(t3, v$ and the equations for determining the 
eigenvalues vk, vf are given by (2.24) (2.27) and (2.31) (2.34) from [5], where, in the last two, we must 

Put 

hi = -2 ctg oi 

The inversion formulae for transforms (6.17) have the form [5] 

(6.18) 

(6.19) 

The expression for c&(oO, ot) is given by (2.28) from [5], while okk(ero, ot) is given by (2.40) from [5], 
in which we must take relation (6.18) into account. 

The application of integral transformation (6.17) to the above-mentioned boundary-value problems 
for Vt(r, e) and W,*(r, 8) enabled us to obtain their transforms in the form 

We obtain the transform U,&l), as previously, from formulae (5.24) and (5.8), in which we must take 
u= ]n] andv= i v . From the transforms obtained U&T), V,*k(r), Wz,J r , using inversion formulae (4.18) ) 
(6.19) and (3.14) we obtain their originals and thereby obtain explicit formulae for the displacement 
field. 

Hence, we have obtained exact solutions for all versions of the problems. As previously [5], we can 
mention numerous special cases of the problems solved here. 
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